Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37952637

RESUMEN

The blood clam (Tegillarca granosa), a marine bivalve of ecological and economic significance, often encounters intermittent hypoxia in mudflats and aquatic environments. To study the response of blood clam foot to prolonged intermittent hypoxia, the clams were exposed to intermittent hypoxia conditions (0.5 mg/L dissolved oxygen, with a 12-h interval) for 31 days. Initially, transcriptomic analysis was performed, uncovering a total of 698 differentially expressed genes (DEGs), with 236 upregulated and 462 downregulated. These genes show enrichments in signaling pathways related to glucose metabolism, sugar synthesis and responses to oxidative stress. Furthermore, the activity of the enzyme glutathione peroxidase (GPx) and the levels of gpx1 mRNA showed gradual increases, reaching their peak on the 13th day of intermittent hypoxia exposure. This observation suggests an indirect protective role of GPx against oxidative stress. The results of this study make a significantly contribute to our broader comprehensive of the physiological, biochemical responses, and molecular reactions governing the organization of foot muscle tissue in marine bivalves exposed to prolonged intermittent hypoxic conditions.


Asunto(s)
Arcidae , Bivalvos , Animales , Arcidae/genética , Arcidae/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Perfilación de la Expresión Génica , Hipoxia/genética , Transcriptoma , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo
2.
Fish Shellfish Immunol ; 144: 109320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122950

RESUMEN

Blood clam Tegillarca granosa is a type of economically cultivated bivalve mollusk with red blood, and it primarily relies on hemocytes in its hemolymph for immune defense. However, there are currently no reports on the isolation and identification of immune cells in T. granosa, which hinders our understanding of their immune defense. In this study, we employed single-cell transcriptome sequencing (scRNA-seq) to visualize the molecular profile of hemocytes in T. granosa. Based on differential expression of immune genes and hemoglobin genes, hemocytes can be molecularly classified into immune cells and erythrocytes. In addition, we separated immune cells using density gradient centrifugation and demonstrated their stronger phagocytic capacity compared to erythrocytes, as well as higher levels of ROS and NO. In summary, our experiments involved the isolation and functional identification of immune cells in hemolymph of T. granosa. This study will provide valuable insights into the innate immune system of red-blood mollusks and further deepen the immunological research of mollusks.


Asunto(s)
Arcidae , Bivalvos , Animales , Hemolinfa , Arcidae/genética , Bivalvos/genética
3.
BMC Genomics ; 24(1): 700, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990147

RESUMEN

BACKGROUND: ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking. RESULTS: The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation. CONCLUSION: Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.


Asunto(s)
Arcidae , Bivalvos , Humanos , Animales , Filogenia , Arcidae/genética , Arcidae/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Genoma , Bivalvos/genética
4.
Gene ; 862: 147256, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36754178

RESUMEN

Hemoglobin (Hb) is the major protein component of red blood cells (hemocytes) of the blood clam Tegillarca granosa. Three T. granosa hemoglobin genes have been mentioned in the literature, designated Tgr-HbI, Tgr-HbIIA and Tgr-HbIIB. Previously, our group identified another novel gene, Tgr-HbIII, in the Hb cluster of the chromosome-level genome but the issue of whether this Hb gene expresses functional protein remains unclear. In the current study, phylogenetic analysis revealed that Tgr-HbIII resembles an ancient Hb gene. Sequence alignment and three-dimensional structural modeling results showed that Tgr-HbIII does not bind heme due to the completely different structure at amino acid position 96-100 and replacement of the N100 residue in known Tgr-Hbs with Q100, what causes loss of a single hydrogen bond linking heme with the globin fold. Interface prediction data suggest that Tgr-HbIII forms a homodimer (ΔG = -5.6 kcal/mol) with a similar conformation to the Tgr-HbI homodimer (ΔG = -3.5 kcal/mol). In adult T. granosa, mRNA expression of Tgr-HbIII was lower than that of Tgr-HbIIA and Tgr-HbIIB (up to 100 × ), but comparable to that of Tgr-HbI. Notably, protein expression of Tgr-HbIII was extremely low. Single-cell RNA sequencing analysis of Hb expression showed that all adult hemocytes expressed Tgr-HbI, Tgr-HbIIA and Tgr-HbIIB, while only 43 % (3872 of 8978) expressed Tgr-HbIII. Based on the collective data, we speculate that Tgr-HbIII carried oxygen prior to mutation of N100 to Q100 and subsequently evolved into a known functional remnant of Hb with an adequate mRNA/low protein expression profile. The current study provides a foundation for further research on the origin, evolution and function of molluscan Hbs.


Asunto(s)
Arcidae , Animales , Filogenia , Arcidae/genética , Hemoglobinas/química , ARN Mensajero/genética , Hemo
5.
Fish Shellfish Immunol ; 131: 1234-1244, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36417957

RESUMEN

Serine protease inhibitors (SPIs) are the main regulators of serine protease activities. In this study, we present a genome-wide identification of SPI genes in T. granosa(TgSPI genes)and their expression characteristics in respond to Vibrio stress. A total of 102 TgSPI genes belonging to eight families, including Serpin, TIL (trypsin inhibitor like cysteine rich domain), Kunitz, Kazal, I84, Pacifastin, WAP (whey acidic protein) and A2M (Alpha-2-macroglobulin) were identified, while no genes belonging to Bowman-Birk, amfpi and Antistasin families were identified. The Kazal family has the most TgSPI genes with 38, and 11 TgSPI genes belong to the mollusc-specific I84 family. The TgSPI genes were found to be randomly distributed on 17 chromosomes with 12 tandem duplicate gene pairs. Expression profiles showed that most TgSPI genes were mainly expressed in immune-related tissues such as hepatopancreas, gill and mantle. In the hepatopancreas, most of TgSPI genes were sensitive to Vibrio stress, 28 and 29 TgSPI genes were up-regulated and down-regulated, respectively. Some up-regulated genes with signal peptides, such as the TgSPIs of I84 family, may act as a mechanism to directly prevent Vibrio from invasion. Six Kazal-type TgSPIs (TgSPI29, 45, 49, 50, 51 and 52) were intracellular proteins and their expression was down-regulated in hemocytes after Vibrio stress. This may have boosted protease activity in hemocytes to the point that more hemoglobin derived peptides were produced and secreted into the hemolymph to exert their anti-Vibrio effects. These findings may provide valuable information for further clarifying the roles of SPIs in the immune defense and will benefit future exploration of the immune function of SPIs in molluscs.


Asunto(s)
Arcidae , Serpinas , Vibrio , Animales , Inhibidores de Serina Proteinasa/química , Serpinas/genética , Secuencia de Aminoácidos , Arcidae/genética , Arcidae/metabolismo , Inmunidad , Vibrio/metabolismo
6.
Gene ; 845: 146865, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067865

RESUMEN

Exposure to cadmium (Cd), a heavy metal, can cause strong and toxic side effects. Cd can enter the body of organisms in several ways, leading to various pathological reactions in the body. Tegillarca granosa is a kind of bivalve shellfish favored by people in the coastal areas of China. Bivalve shellfish can easily absorb heavy metal pollutants from water bodies while filter feeding. T. granosa is considered a hyper-accumulator of Cd, and the TgABCA3 gene is highly expressed in individuals with a high content of Cd-exposed blood clam. However, it is unclear whether TgABCA3 is involved in Cd ion transport in blood clam and the molecular mechanism for the mechanism of the Cd-induced responses for maintaining cell homeostasis. In this study, the complete cDNA of the TgABCA3 gene was analyzed to provide insights into the roles of TgABCA3 in resistance against Cd in blood clam. The complete sequence of TgABCA3 showed high identity to that of TgABCA3 from other bivalves and contained some classical motifs of ATP-binding cassette transport proteins. TgABCA3 expression in different tissues was measured using real-time quantitative polymerase chain reaction (qRT-PCR) and western blot analysis. The tissue-specific expression showed that TgABCA3 expression was highest in the gill tissue. The TgABCA3 expression in the gill tissue was silenced using the RNA interference technique. After TgABCA3 silencing, the TgABCA3 expression decreased, the Cd content increased, the oxygen consumption and ammonia excretion rates increased, and the ingestion rate decreased. These results showing that the extents of Cd accumulation and resulting toxic effects are related to expression levels and activity of TgABCA3 indicate that TgABCA3 has a protective function against Cd in the clam. This increase in Cd accumulation results in serious damage to the body, leading to the enhancement of its physiological metabolism. Therefore, the findings of the study demonstrated that TgABCA3 can participate in the transport of Cd ions in the blood clam through active transport and play a vital role in Cd detoxification.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Arcidae , Bivalvos , Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Amoníaco/metabolismo , Animales , Arcidae/genética , Arcidae/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Cadmio/metabolismo , Proteínas Portadoras/metabolismo , ADN Complementario/genética , Contaminantes Ambientales/farmacología , Metales Pesados/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
7.
Gene ; 834: 146611, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35618219

RESUMEN

Cadmium (Cd) pollution threatens the cultivation of the blood clam Tegillarca granosa (T. granosa) in coastal regions of the East China Sea. The molecular mechanisms regulating Cd stress response and detoxification in blood clams are largely unclear. In the present study, the full-length T. granosa c-Myc (Tgc-Myc) cDNA was cloned for the first time. The 3063-bp cDNA consisted of a 129-bp 5' untranslated region (UTR), a 1746-bp 3' UTR, and a 1188-bp open reading frame encoding a predicted protein of 395 amino acid residues. The predicted protein had a calculated molecular weight of 44.9 kDa and an estimated isoelectric point of 6.82. The predicted protein contained an N-terminal transactivation domain and a C-terminal basic helix-loop-helix leucine zipper domain, which are conserved functional domains of c-Myc proteins. Tgc-Myc showed broad tissue distribution in blood clams, with the highest expression detected in the gill and hepatopancreas. Exposure to Cd, a major heavy metal pollutant in coastal regions of the East China Sea, induced Tgc-Myc expression in gill tissues. Tgc-Myc knockdown led to reduced expression of a variety of stress response/detoxification genes in blood clams cultivated in Cd-contaminated seawater. Tgc-Myc knockdown also led to decreased expression of IGF1R, a proto-oncogene that promotes cell proliferation. These findings indicated that Tgc-Myc regulates Cd-induced stress response and detoxification in blood clams. The upregulation of Tgc-Myc may serve as an approach to generate strains with an enhanced detoxification response and consequently a low heavy metal buildup.


Asunto(s)
Arcidae , Metales Pesados , Secuencia de Aminoácidos , Animales , Arcidae/química , Arcidae/genética , Arcidae/metabolismo , Cadmio/toxicidad , Clonación Molecular , ADN Complementario/genética , Metales Pesados/toxicidad , Distribución Tisular
8.
Fish Shellfish Immunol ; 125: 84-89, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35537672

RESUMEN

The hemoglobin (Hb) is identified in Tegillarca granosa and its derived peptides have been proved to possess antibacterial activity against gram-positive and gram-negative bacteria. In this study, we identified a series of novel antimicrobial peptides (AMPs) and artificially mutated AMPs derived from subunits of T. granosa Hbs, among which, a mutant T. granosa hemoglobin peptide (mTgHbP) mTgHbP7, was proved to possess predominant antibacterial activity against three bacteria strains (Vibrio alginolyticus, V. parahaemolyticus and Escherichia coli). Besides, mTgHbP7 was predicted to form α-helical structure, which was known to be an important feature of bactericidal AMPs. Furthermore, upon contact with HEK293 cell line, we confirmed that mTgHbP7 had no cytotoxicity to mammalian cell even at a high concentration of 160 µM. Therefore, the findings reported here provide a rationalization for antimicrobial peptide prediction and optimization from mollusk hemoglobin, which will be useful for future development of antimicrobial agents.


Asunto(s)
Antibacterianos , Arcidae , Animales , Arcidae/genética , Arcidae/microbiología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Células HEK293 , Hemoglobinas/química , Humanos , Mamíferos , Pruebas de Sensibilidad Microbiana , Péptidos/química
9.
Fish Shellfish Immunol ; 121: 232-238, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35031474

RESUMEN

The peptidoglycan recognition proteins (PGRPs) are conserved innate immune molecular in invertebrates and vertebrates, which play important roles in immune system by recognize the peptidoglycans of bacterial cell walls. Although PGRPs have been extensively characterized in insects, a systematic analysis of PGRPs in bivalves is lacking. In the present study, the phylogenic relationships, gene structures and expression profiles of PGRPs in marine bivalves were analyzed. The results indicated that the most PGRPs of bivalves were predicted to degrade the peptidoglycans and prevent excessive immunostimulation of bacteria. In addition, the results of the present study showed that the protein diversity of PGRPs in most marine bivalves was mainly generated by the alternative splicing of genes, however the alternative splicing of PGRP gene family was absent in Tegillarca granosa. The differences of PGRPs might be related to the genetic and environmental differences of marine bivalves. Spatiotemporal expression profiling in T. granosa suggested that PGRPs play important roles in the immune response of invasive pathogens. The present study describes a comprehensive view of PGRPs in the blood clam T. granosa and provides a foundation for functional characterization of this gene family in innate immune of marine bivalves.


Asunto(s)
Arcidae , Proteínas Portadoras/genética , Animales , Arcidae/genética , Arcidae/inmunología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/veterinaria , Proteínas Portadoras/inmunología , Inmunidad Innata , Filogenia
10.
Genes Genomics ; 43(6): 669-677, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33835405

RESUMEN

BACKGROUND: The ark shell (Scapharca broughtonii) is one of the most economically important mollusks in the Bohai Sea and Yellow Sea of China. In recent years, ark shells from the Korean population were introduced to China for seed propagation and culture. OBJECTIVE: To explore the impact of the introduction of Korean ark shell on the genetic diversity of native population in China. METHODS: Simple sequence repeat (SSR) is effective and widely used tool for genetic analysis. In this study, 180 EST-SSRs were selected and verified by polymerase chain reaction and polyacrylamide gel electrophoresis. Subsequently, five polymorphic EST-SSRs were screened and their primers were modified by fluorescein for use in the genetic analysis of four populations. RESULTS: Genetic analysis showed that 361 alleles amplified by five SSR loci were detected in the four populations. The number of alleles for the five SSRs ranged from 8 to 30, with a mean of 18.05 (standard deviation, SD = 6.492). The effective number of alleles varied from 2.253 to 22.222, with a mean of 10.596 (SD = 4.713). Observed heterozygosity and expected heterozygosity were 0.167-0.833 and 0.566-0.971, with average values of 0.520 (SD = 0.177) and 0.891 (SD = 0.062), respectively. Polymorphic information content ranged from 0.521 to 0.953, with a mean of 0.865 (SD = 0.070). The pairwise genetic differentiation coefficient (FST) of the four populations ranged from 0.0267 to 0.0477, showing low genetic differentiation. The phylogenetic tree constructed by neighbor-joining method showed that the genetic distance between the Chinese Dalian native population and three Korean populations was relatively more far than that among those Korean populations. CONCLUSION: The results indicated that the genetic structure of the Dalian wild population was less affected by the introduced Korean wild populations.


Asunto(s)
Arcidae/genética , Repeticiones de Microsatélite/genética , Filogenia , Transcriptoma/genética , Alelos , Animales , China , Etiquetas de Secuencia Expresada , Marcadores Genéticos/genética
11.
Mol Biol Evol ; 38(6): 2351-2365, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528571

RESUMEN

Blood clams differ from their molluscan kins by exhibiting a unique red-blood (RB) phenotype; however, the genetic basis and biochemical machinery subserving this evolutionary innovation remain unclear. As a fundamental step toward resolving this mystery, we presented the first chromosome-level genome and comprehensive transcriptomes of the blood clam Tegillarca granosa for an integrated genomic, evolutionary, and functional analyses of clam RB phenotype. We identified blood clam-specific and expanded gene families, as well as gene pathways that are of RB relevant. Clam-specific RB-related hemoglobins (Hbs) showed close phylogenetic relationships with myoglobins (Mbs) of blood clam and other molluscs without the RB phenotype, indicating that clam-specific Hbs were likely evolutionarily derived from the Mb lineage. Strikingly, similar to vertebrate Hbs, blood clam Hbs were present in a form of gene cluster. Despite the convergent evolution of Hb clusters in blood clam and vertebrates, their Hb clusters may have originated from a single ancestral Mb-like gene as evidenced by gene phylogeny and synteny analysis. A full suite of enzyme-encoding genes for heme synthesis was identified in blood clam, with prominent expression in hemolymph and resembling those in vertebrates, suggesting a convergence of both RB-related Hb and heme functions in vertebrates and blood clam. RNA interference experiments confirmed the functional roles of Hbs and key enzyme of heme synthesis in the maintenance of clam RB phenotype. The high-quality genome assembly and comprehensive transcriptomes presented herein serve new genomic resources for the super-diverse phylum Mollusca, and provide deep insights into the origin and evolution of invertebrate RB.


Asunto(s)
Arcidae/genética , Evolución Biológica , Hemoglobinas/genética , Animales , Arcidae/metabolismo , Cromosomas , Genoma , Hemo/biosíntesis , Hemolinfa/metabolismo , Humanos , Familia de Multigenes , Transcriptoma
12.
Dev Comp Immunol ; 116: 103910, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33129883

RESUMEN

Unlike vertebrate species, invertebrates lack antigen-antibody mediated immune response and mainly rely on haemocyte phagocytosis to fight against pathogen infection. Recently, studies conducted in model vertebrates demonstrated that the multifunctional protein calmodulin (CaM) plays an important role in regulating immune responses. However, the intrinsic relation between CaM and phagocytosis process remains poorly understood in invertebrate species such as bivalve mollusks. Therefore, in the present study, the immunomodulatory function of CaM on haemocyte phagocytosis was verified in the blood clam, Tegillarca granosa, using the CaM-specific inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7). Results obtained show that CaM inhibition significantly suppressed the phagocytic activity of haemocytes. In addition, CaM inhibition constrained intracellular Ca2+ elevation, hampered actin cytoskeleton assembly, suppressed calcineurin (CaN) activity, and disrupted NF-κB activation in haemocytes upon LPS induction. Furthermore, expression of seven selected genes from the actin cytoskeleton regulation- and immune-related pathways were significantly downregulated whereas those of CaM and CaN from the Ca2+-signaling pathway were significantly upregulated by in vitro incubation of haemocytes with W-7. For the first time, the present study demonstrated that CaM play an important role in phagocytosis modulation in bivalve species. In addition, the intracellular Ca2+ and downstream Ca2+-signaling-, actin cytoskeleton regulation-, and immune-related pathways offer candidate routes through which CaM modulates phagocytosis.


Asunto(s)
Arcidae/efectos de los fármacos , Calmodulina/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Sulfonamidas/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Arcidae/genética , Arcidae/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Hemocitos/citología , Hemocitos/efectos de los fármacos , Hemocitos/metabolismo , Inmunidad/efectos de los fármacos , Inmunidad/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Fagocitosis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
13.
Mol Phylogenet Evol ; 150: 106879, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32512195

RESUMEN

Arcidae is a diverse group of ark shells with over 260 described species. The phylogenetic relationships and the evolution of the mitochondrial genomes in this family were poorly understood. Comparisons of mitogenomes have been widely used to explore the phylogenetic relationship among animal taxa. We described the complete mitogenomes of Arca navicularis, Scapharca gubernaculum and one nearly complete mitogenome of Anadara consociata. The mitogenome of A. navicularis (18,103 bp) is currently the smallest known Arcidae mitogenome, while the mitogenomes of S. gubernaculum (45,697 bp) and A. consociata (44,034 bp) are relatively large. The mitochondrial gene orders of the three taxa were substantially different from each other, as well as the patterns found in other ark shells. The relationships among Arcidae species recovered from different mitochondrial characters (nucleotide sequence versus gene order) were in disagreement. The phylogeny based on nucleotide sequences did not support the monophyly of Arcidae, as Cucullaea labiata (Cucullaeidae) appeared as a subgroup within Arcinae, rather than sister group to the family Arcidae. In addition, we presented the first time-calibrated evolutionary tree of Arcidae based on mitochondrial DNA (mtDNA) sequences, which placed the deepest divergence within Arcidae at 342.36 million years ago (Mya), around the Carboniferous (360-300 Mya).


Asunto(s)
Arcidae/clasificación , Evolución Molecular , Mitocondrias/genética , Animales , Arcidae/genética , Orden Génico , Sistemas de Lectura Abierta/genética , Filogenia
14.
Mol Phylogenet Evol ; 150: 106857, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32473333

RESUMEN

Arcoida, comprising about 570 species of blood cockles, is an ecologically and economically important lineage of bivalve molluscs. Current classification of arcoids is largely based on morphology, which shows widespread homoplasy. Despite two recent studies employing multi-locus analyses with broad sampling of Arcoida, evolutionary relationships among major lineages remain controversial. Interestingly, mitochondrial genomes of several ark shell species are 2-3 times larger than those found in most bilaterians, and are among the largest bilaterian mitochondrial genomes reported to date. These results highlight the need of detailed phylogenetic study to explore evolutionary relationships within Arcoida so that the evolution of mitochondrial genome size can be understood. To this end, we sequenced 17 mitochondrial genomes and compared them with publicly available data, including those from other lineages of Arcoida with emphasis on the subclade Arcoidea species. Our phylogenetic analyses indicate that Noetiidae, Cucullaeidae and Glycymerididae are nested within a polyphyletic Arcidae. Moreover, we find multiple independent expansions and potential contractions of mitochondrial genome size, suggesting that the large mitochondrial genome is not a shared ancestral feature in Arcoida. We also examined tandem repeats and inverted repeats in non-coding regions and investigated the presence of such repeats with relation to genome size variation. Our results suggest that tandem repeats might facilitate intraspecific mitochondrial genome size variation, and that inverted repeats, which could be derived from transposons, might be responsible for mitochondrial genome expansions and contractions. We show that mitochondrial genome size in Arcoida is more dynamic than previously understood and provide insights into evolution of mitochondrial genome size variation in metazoans.


Asunto(s)
Arcidae/clasificación , Mitocondrias/genética , Animales , Arcidae/genética , Teorema de Bayes , Evolución Molecular , Tamaño del Genoma , Sistemas de Lectura Abierta/genética , Filogenia
15.
Genes Genomics ; 42(2): 189-202, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31797313

RESUMEN

BACKGROUND: Blood clam (Anadara broughtonii) is a commercially important marine bivalve characterised by the red blood. Recently, the clams have been subjected to severe resource recession. Multiple environmental stressors are indispensable for the recession. OBJECTIVE: We aimed to investigate the transcriptome information of blood clam under environmental stressors. METHODS: Paired-end Illumina HiSeq™ 2500 sequencing technology was employed for cDNA library construction and Illumina sequencing. Several public databases were introduced for gene annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathways analyses. The Open Reading Frame of annotated hemoglobin (Hb) was predicted and validated by DNAMAN 6.0 and NCBI BLASTx, respectively. RESULTS: A total of 242,919 transcripts were generated, 116,264 unigenes were subsequently assembled with an average length of 747 base pairs, and 33,776 unigenes were successfully annotated. Gene Ontology (GO) categories indicated that the terms of cellular processes, metabolic processes, cell, cell part, binding, and catalytic activity were dominant. KEGG pathway analyses suggested ribosome, oxytocin, focal adhesion, Ras, and PI3K-Akt were the largest signaling pathway groups, and many presented pathways (Ras, Rap1, and MAPK, etc.) were related to apoptosis, immune and stress response. In addition, a total of 19,306 potential simple sequence repeats (SSRs) were detected in 15,852 sequences. Six hemoglobin-related genes with complete conserved domain sequences were identified and 3 of them were predicted as HbI, HbIIα, and HbIIß. CONCLUSION: This study provides transcriptome responses to multiple environmental stressors in blood clams and would provide interesting hints for further studies.


Asunto(s)
Arcidae/genética , Hemoglobinas/genética , Transcriptoma , Animales , Arcidae/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Ontología de Genes , Hemoglobinas/clasificación , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Filogenia , Transducción de Señal , Estrés Fisiológico/genética
16.
Fish Shellfish Immunol ; 97: 390-402, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31866450

RESUMEN

Lipopolysaccharide-induced TNF-alpha factor (LITAF), as a transcription factor, activates the transcription of TNF and other cytokines in inflammatory response upon lipopolysaccharide (LPS) stimulation. In the present study, we cloned and identified the full-length cDNA of LITAF homolog from blood clam Tegillarca granosa for the first time. The full-length cDNA of TgLITAF was 1801 bp encoding a polypeptide of 147 amino acids with an estimated molecular mass of 16.13 kDa. TgLITAF contained a zf-LITAF-like zinc ribbon domain at the C-terminal of the protein and the TgLITAF domain showed 48-74% amino acid sequence identity with other known LITAFs from other species. Subcellular localization study showed that TgLITAF was mainly expressed in the nucleus. qRT-PCR analysis showed that the TgLITAF transcription expressed constitutively in all the examined tissues with the highest expression level in the gills. After LPS or V. alginolyticus treatment, expression of TgLITAF in hemocytes was both up-regulated significantly at 3-6 h. Furthermore, in vitro study indicated that overexpression of TgLITAF in HeLa cells resulted in the activation of TNFα, p53, and influenced the expression levels of apoptotic-related genes Bax, Bcl-2, Caspase-3, Caspase-6, and Caspase-7. The proliferation of HeLa cells was inhibited by overexpression of TgLITAF. Apoptotic fluorescence assay further revealed that TgLITAF participated in the apoptotic process of HeLa cells. Western blotting analysis showed that overexpression of TgLITAF increased endogenous level of cleaved Caspase-7. Taken together, these results revealed that TgLITAF participates in the innate immune response to the pathogen invasion in blood clams and induces apoptosis in HeLa cells.


Asunto(s)
Arcidae/genética , Arcidae/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Células HeLa , Hemocitos/inmunología , Humanos , Lipopolisacáridos/farmacología , Filogenia , Alineación de Secuencia , Factor de Necrosis Tumoral alfa/química
17.
Mol Biol Rep ; 46(4): 4245-4257, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31111368

RESUMEN

Sulfide and hypoxia threaten marine organisms in various ways. Anadara broughtonii, a commercial marine bivalve in China which has great potential exposure to sulfide and hypoxia, was selected to test the responses to these stresses. Digital gene expression profile (DGE) analysis was performed on the juveniles' gills after exposed to normal condition (CG group), hypoxia (LO group), and low/high concentration of sulfide (LS/HS group, administered in hypoxia), respectively, using RNA-seq technology. A total of over 30 million clean reads were filtered from each DGE library and over 90% of them were annotated successfully. In total, 774 significant differentially expressed genes (DEGs) were detected and assigned to Gene ontology (GO) classification and KEGG Pathway enrichment analysis. The results show that many of the upregulated DEGs are related to hemoglobin, immunology, and stress responding. In the stressed A. broughtonii, cytochrome P450 and phosphoenolpyruvate carboxykinase may stimulate the glycolysis process to reduce oxygen consumption; Aminoacyl-tRNA synthetases, heat shock protein and protein disulfide isomerase probably help to maintain the genome integrity; Baculoviral IAP repeat-containing protein 2/3, mitogen-activated protein kinase and tumor necrosis factor pathways were probably responsible for protein repair, proteolysis, apoptosis and immune responses to high concentration of sulfide. Combined challenges also induced alternative oxidase and sushi repeat-containing protein, which have indistinct but probably indispensable function in invertebrates. For the first time, comprehensive transcriptome information on A. broughtonii in response to sulfide and hypoxia were provided. Our research offers new insights into the molecular mechanism behind the resistance of shellfish to sulfide and hypoxia.


Asunto(s)
Arcidae/genética , Transcriptoma/genética , Animales , Arcidae/metabolismo , China , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Hipoxia/genética , Análisis de Secuencia de ADN/métodos , Sulfuros/efectos adversos
19.
PLoS One ; 12(9): e0184584, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28934256

RESUMEN

BACKGROUND: Blood clams (Tegillarca granosa) are one of the most commercial shellfish in China and South Asia with wide distribution in Indo-Pacific tropical to temperate estuaries. However, recent data indicate a decline in the germplasm of this species. Furthermore, the molecular mechanisms underpinning reproductive regulation remain unclear and information regarding genetic diversity is limited. Understanding the reproductive biology of shellfish is important in interpreting their embryology development, reproduction and population structure. Transcriptome sequencing (RNA-seq) rapidly obtains genetic sequence information from almost all transcripts of a particular tissue and currently represents the most prevalent and effective method for constructing genetic expression profiles. RESULTS: Non-reference RNA-seq, an Illumina HiSeq2500 Solexa system, and de novo assembly were used to construct a gonadal expression profile of the blood clam. A total of 63.75 Gb of clean data, with at least 89.46% of Quality30 (Q30), were generated which was then combined into 214,440 transcripts and 125,673 unigenes with a mean length of 1,122.63 and 781.30 base pairs (bp). In total, 27,325 genes were annotated by comparison with public databases. Of these, 2,140 and 2,070 differentially expressed genes (DEGs) were obtained (T05 T08 vs T01 T02 T04, T06 T07 vs T01 T02 T04; in which T01-T04 and T05-T08 represent biological replicates of individual female and male clams, respectively) and classified into two groups according to the evaluation of biological replicates. Then 35 DEGs and 5 sex-related unigenes, in other similar species, were investigated using qRT-PCR, the results of which were confirmed to data arising from RNA-seq. Among the DEGs, sex-related genes were identified, including forkhead box L2 (Foxl2), sex determining region Y-box (Sox), beta-catenin (ß-catenin), chromobox homolog (CBX) and Sex-lethal (Sxl). In addition, 6,283 simple sequence repeats (SSRs) and 614,710 single nucleotide polymorphisms (SNPs) were identified from the RNA-seq results. CONCLUSIONS: This study provided the first complete gonadal transcriptome data for the blood clam and allowed us to search many aspects of gene sequence information, not limited to gender. This data will improve our understanding of the transcriptomics and reproductive biology of the blood clam. Furthermore, molecular markers such as SSRs and SNPs will be useful in the analysis of genetic evolution, bulked segregant analysis (BSA) and genome-wide association studies (GWAS). Our transcriptome data will therefore provide important genetic information for the breeding and conservation of germplasm.


Asunto(s)
Arcidae/metabolismo , Caracteres Sexuales , Transcriptoma , Animales , Arcidae/genética , Análisis por Conglomerados , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Biblioteca de Genes , Gónadas/metabolismo , Masculino , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
20.
Fish Shellfish Immunol ; 66: 300-306, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28522418

RESUMEN

The increasing production and extensive application of nanoparticles (NPs) inevitably leads to increased release of NPs into the marine environment and therefore poses a potential threat to marine organisms, especially the sessile benthic bivalves. However, the impacts of NPs on the immunity of commercial and ecological important bivalve species, Tegillarca granosa, still remain unknown to date. In addition, the molecular mechanism of the immunotoxicity of NPs still remains unclear in marine invertebrates. Therefore, the immunotoxicity of nTiO2 exposure to T. granosa at environmental realistic concentrations was investigated in the present study. Results obtained showed that the total number, phagocytic activity, and red granulocytes ratio of the haemocytes were significantly reduced after 30 days nTiO2 exposures at the concentrations of 10 and 100 µg/L. Furthermore, the expressions of genes encoding Pattern Recognition Receptors (PPRs) and downstream immune-related molecules were significantly down-regulated by nTiO2 exposures, indicating a reduced sensitivity to pathogen challenges. In conclusion, evident immunotoxicity of nTiO2 to T. granosa at environmental realistic concentrations was detected by the present study. In addition, the gene expression analysis suggests that the PRRs (both TLRs and RIG1 investigated) may be the molecules for NPs recognition in marine invertebrates.


Asunto(s)
Arcidae/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/toxicidad , Animales , Arcidae/genética , Arcidae/inmunología , Arcidae/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Distribución Aleatoria , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...